
MA 3046 - Matrix Analysis Problem Set 5

1. Consider each of the following systems from each of three perspectives -
(i) As a computational problem to be solved by Gaussian Elimination in a three

digit, rounding machine (you may wish to check your answers with the laboratory
routine ge steps chop.m)

(ii) As a geometric problem involving the intersection of two lines
(iii) As a geometric problem involving construction of one (column) vector in terms

of two others.
Which of these would you expect to be ill-conditioned and which to be well conditioned?
What attributes appear to be associated with well-conditioned problems from each geo-
metric view?

(a.)
2.01 x1 − 1.99 x2 = 4.00
1.99 x1 + 2.01 x2 = 4.00

solution:

a.(i) The augmented matrix here is:∙
2.01 −1.99 4.00
1.99 2.01 4.00

¸
Elimination produces:

R2 − (.990)R1
∙
2.01 −1.99 4.00
0 3.89 0.0400

¸
There are no small pivots, so this system should be relatively well-conditioned.

(ii) Geometrically, solving this system is equivalent to finding the point of
intersection of the two straight lines:
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solution:

a.(ii) (cont) Since small perturbations of these lines would not seem move
that intersection significantly, from this perspective, we also expect this system
to be well-conditioned.

(iii) This system is also equivalent to the problem:

x1

∙
2.01
1.99

¸
+ x2

∙−1.99
2.01

¸
=

∙
4.00
4.00

¸
The two column vectors here can be plotted in <2 and are

(b.)
2.01 x1 + 1.99 x2 = 4.00
1.99 x1 + 2.01 x2 = 4.00

solution:

b.(i) The augmented matrix here is:∙
2.01 1.99 4.00
1.99 2.01 4.00

¸
Here, elimination produces:

R2 − (.990)R1
∙
2.01 1.99 4.00
0 0.0400 0.0400

¸
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solution:

Here there is an inescapable small pivot, so this system is likely somewhat
ill-conditioned. (That can be true even though in this case, Gaussian elim-
ination produces a very accurate solution. To better understand this last
point, observe what happens to the solution if you replace the right-hand side
by [ 4.02 3.99 ]T .)

b. (ii) Geometrically, solving this system is equivalent to finding the point of
intersection of the two straight lines:
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Since small perturbations of these lines would seem move that intersection sig-
nificantly, from this perspective, from this perspective we also expect this sys-
tem to be ill-conditioned.

(iii) This system is also equivalent to the problem:

x1

∙
2.01
1.99

¸
+ x2

∙
1.99
2.01

¸
=

∙
4.00
4.00

¸
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solution:

The two column vectors here can be plotted in <2 and are

These vectors are nearly parallel, and drawing a parallelogram with them as
sides would be quite dicey.

(c.)
1.01 x1 + 0.01 x2 = 4.00
0.01 x1 + 1.01 x2 = 2.00

solution:

c.(i) Here, the augmented matrix is:∙
1.01 0.01 4.00
0.01 1.01 2.00

¸
Elimanation produces: and then eliminate in the first column:

R2 − (.00990)R1
∙
1.01 0.01 4.00
0 1.01 1.96

¸
The lack of small pivots here suggests that this system is probably fairly well-
conditioned.
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solution:

c. (ii) Geometrically, solving this system is equivalent to finding the point of
intersection of the two straight lines:
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Since small perturbations of these lines would not seem move that intersec-
tion significantly, from this perspective, we also expect this system to be well-
conditioned.

(iii) This system is also equivalent to the problem:

x1

∙
0.01
1.01

¸
+ x2

∙
1.01
0.01

¸
=

∙
2.00
4.00

¸
The two column vectors here can be plotted in <2 and are
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solution:

There is nothing in this geometry to suggest that constructing the vector

[ 2.00 4.00 ]T

in terms of these would be difficult.
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2. Using MATLAB to calculate the inverses in each case, determine the condition number
(using the infinity norm) for each of the matrices in problems 1. Do these values support
your geometric intuition about which problems are and are not well-conditioned?

solution:

For problem 1 a.:

A =

∙
2.01 −1.99
1.99 2.01

¸
and A−1 =

∙
0.251 0.249
−0.249 0.251

¸
and so kA k∞kA−1 k∞ = (4)(0.5) = 2.

For problem 1 b.:

A =

∙
2.01 1.99
1.99 2.01

¸
and A−1 =

∙
25.1 −24.9
−24.9 25.1

¸
and so kA k∞kA−1 k∞ = (4)(50) = 200.

For problem 1 c.:

A =

∙
0.01 1.01
1.01 0.01

¸
and A−1 =

∙ −0.00980 0.990
0.990 −0.00980

¸
and so kA k∞kA−1 k∞ = (1.02)(1.00) = 1.02.

So, in summary

Problem Number kA k∞kA−1 k∞ Apparent Condition

1 a. 2 good
1 b. 200 not good
1 c. 1.02 good

These data strongly supports the notion that “bad” problems are those with
“large(r)” condition numbers.
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3. Based on your results from problems 1 and 2, what geometric attributes would you
associate with the best-conditioned systems of two linear equations in two unknowns?

solution:

It looks a if

(i) There should be no small pivots in the echelon form of the augmented
matrix.

(ii) The lines represented by the equations should not be nearly parallel.
(ii) The vectors representing the columns of the original augmented matrix

should not be nearly parallel. (In fact, likely the closer they are to
orthogonal, the better!)
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4. Use MATLAB to generate random 6× 6 matrices with condition numbers satisfying:

a. 1 < cond(A) ≤ 10

b. 10 < cond(A) ≤ 100

c. 100 < cond(A) ≤ 1000

d. 1000 < cond(A)

For each of the matrices, have MATLAB compute A−1, and observe the correlations, if
any, between cond(A), the elements of A, and the elements of A−1.

solution:

The matrix for part a. can be generated with the MATLAB commands:

a = rand(6); while (cond(a) > 10) ; a = rand(6) ;end

Since the matrix will be (quasi-)random, the results will differ depending on the
machine used, and what, if any computations had been done on that machine
before. On the machine used to create these solutions, the matrix obtained was:

a =


0.7848 0.2109 0.1770 0.4418 0.0418 0.4364
0.2409 0.5162 0.7494 0.1039 0.0570 0.8193
0.8223 0.1472 0.6682 0.8750 0.0590 0.4448
0.0126 0.8199 0.2478 0.8925 0.4735 0.9153
0.5697 0.3899 0.8984 0.0169 0.3840 0.4911
0.4619 0.0121 0.2786 0.5165 0.5044 0.7484


According to MATLAB, the condition number of this matrix is 9.4478, and

a−1 =


1.5524 −0.4806 −0.3734 −0.2627 0.4951 −0.1608
1.0492 −0.4357 −0.6065 0.9738 0.8017 −1.4912
−1.4127 0.3506 1.0148 −0.2571 0.4623 −0.1520
−0.6759 −0.3876 1.1337 0.4458 −0.4840 −0.0828
−0.4018 −1.5294 −0.5628 0.4833 1.4158 0.7229
0.2883 1.4713 −0.5408 −0.3913 −1.1106 1.0860


and the largest (magnitude) element is the one in the (1, 1) position, i.e. 1.5524.
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solution:

On our system, the matrix for part b. was generated by the MATLAB com-
mand:

while (cond(a) < 10) + (cond(a) > 100) ; a = rand(6) ; end

and was:

a =


0.3421 0.2422 0.5652 0.9219 0.7380 0.9972
0.5281 0.0367 0.8852 0.7104 0.2497 0.0913
0.0260 0.0185 0.3396 0.1444 0.6538 0.4329
0.2106 0.1977 0.2250 0.9793 0.6498 0.7756
0.5196 0.2106 0.5690 0.8176 0.8832 0.8888
0.8871 0.9244 0.7802 0.2841 0.5109 0.3699


whose condition number was 23.1984. MATLAB also provided

a−1 =


−1.6672 −0.3255 −2.3206 −1.4592 4.3872 −0.1915
0.4340 −0.2851 0.8146 1.7056 −2.8634 1.2508
2.0961 0.8936 1.0879 −1.0832 −2.0682 0.0965
−0.7588 0.6561 −0.1816 2.0431 −0.8862 −0.0585
−2.9759 0.0571 1.9113 1.7800 0.7728 0.1823
3.1851 −0.9744 −1.2650 −2.5059 0.6102 −0.3735


whose maximum magnitude element ((1,5) position) is 4.3872.

On our system, the matrix for part c., created by the MATLAB commands:

while (cond(a) < 100) + (cond(a) > 1000) ; a = rand(6) ; end

was

a =


0.9544 0.2858 0.7447 0.9998 0.1917 0.2744
0.5390 0.8735 0.3678 0.5454 0.6127 0.1711
0.9245 0.7432 0.4518 0.8581 0.0167 0.3546
0.4856 0.7043 0.3724 0.1571 0.8871 0.5946
0.4054 0.6899 0.2006 0.7204 0.1290 0.1387
0.3072 0.1251 0.5697 0.7503 0.6581 0.3183


and had a condition number of about 557.6.
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solution:

MATLAB also produced for a−1:
34.0429 −18.2592 −42.4159 19.3378 39.6221 −25.6732
−21.8059 12.9070 27.7139 −12.3899 −25.8580 15.4015
−57.4484 34.2937 75.0372 −34.2344 −73.3817 43.4317
14.5612 −9.3103 −19.3486 8.2452 20.0168 −10.1201
24.4064 −13.0046 −32.2660 14.2690 29.7618 −17.7312
−6.2481 0.0045 8.0617 −1.4581 −5.4559 4.6463


whose largest magnitude element ((3,3) position) is 75.0372.

Finally, on our system, the matrix for part d., created by the MATLAB com-
mands:

while (cond(a) < 1000) ; a = rand(6) ; end

was

a =


0.8755 0.3270 0.3715 0.2942 0.3295 0.7543
0.1990 0.1833 0.8191 0.4704 0.9536 0.5051
0.3554 0.7504 0.3740 0.6137 0.5733 0.6746
0.4652 0.7498 0.4528 0.9855 0.3979 0.1903
0.3119 0.2033 0.3784 0.4298 0.1470 0.0977
0.0856 0.7711 0.5556 0.8799 0.2781 0.2451


whose condition number was approximately 10, 709, and whose inverse, accord-
ing to MATLAB, is:

192.95 81.61 −314.44 159.07 −520.81 187.40
557.81 236.84 −910.32 458.09 −1513.02 547.77
316.52 134.85 −517.11 257.68 −855.09 311.81
−624.88 −265.78 1019.69 −511.94 1693.24 −612.74
114.92 50.19 −188.33 96.75 −314.89 111.55
−426.81 −182.08 698.83 −352.72 1158.68 −418.28


The largest magnitude element of this matrix ((4,5) position) is 1693.24
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solution:

The results here can be summarized in the table

cond(a) max (|aij |) max
¡¯̄
a−1ij

¯̄¢
9.4478 0.9153 1.5524
23.1984 0.9972 4.3872
557.5909 0.9998 75.0372

10709. 0.9855 1693.24

Notice that the maximum element in a is always less than one in magnitude.
Therefore, in this case, we expect that since:

κ(a) = ka k ka−1 k

then, in this case, we clearly expect poorly conditioned matrices to correspond
to those with “large” inverses. The correspondence of the largest elements
of a−1 with the condition numbers here supports that conjecture.

5 - 4 - 4
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5. Consider the two systems

4.55 x1 + 2.39 x2 + 4.18 x3 = 7.52
2.40 x1 + 2.04 x2 + 3.75 x3 = 4.77
3.19 x1 − 2.06 x2 − 4.23 x3 = 1.45

and
4.55 x1 + 2.39 x2 + 4.18 x3 = 7.56
2.40 x1 + 2.04 x2 + 3.75 x3 = 4.72
3.19 x1 − 2.06 x2 − 4.23 x3 = 1.50

(Notice the left-hand sides here are identical, and the right-hand side of the second is only
a “relatively small” perturbation of the right-hand side of the first.)

a. Compare the exact (MATLAB) solutions to both problems. What does that
comparison suggest about the condition of this matrix?

solution:

Using MATLAB, the calculated solution to the first system is 1.125590 . . .0.799300 . . .
0.116802 . . .


while the solution to the second one is:

x =

 1.023110 . . .
3.279168 . . .
−1.179991 . . .


Observe these solutions are drastically different, especially in the second and
third components, even thought the came from the same basic system with only
slightly changed right-hand sides. This is classically characteristic behavior for
so-called ill-conditioned systems.

5 - 5 - 1
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b. Using MATLAB, calculate the condition number of the matrix in this problem.
Does your result support your conclusion in part a or not?

solution:

Using MATLAB, the calculated condition number of the matrix is

κ(A)
.
= 584

This implies that relative errors or changes in the data may produce changes
in the solution of up to almost six hundred times greater. This is a relatively
large condition number, and we should have expected, had we known this, that
the resulting matrix will be at least somewhat ill-conditioned, and that small
changes in the right-hand side data may produce large swings in the solution.
In fact, in this instance, the two right-hand sides:

b(1) =

 7.524.77
1.45

 and b(2) =

 7.564.72
1.50


lead to, using MATLAB’s norm( ) command

kb(1) − b(2) k
kb(1) k = .0090

and so, in the worst case, we could have expected to see here

kx(1) − x(2) k
kx(1) k

.
= 584(.0090) = 5.25

or values that change by over five hundred percent. In this case

kx(1) − x(2) k
kx(1) k

.
= 2.02

so we actually did better than worst case. However, the solutions are clearly
nowhere close to each other, even though the “data” are.
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6. Consider the system of equations:

x1 + 1
2 x2 + 1

3 x3 + 1
4 x4 = 4

3

1
2 x1 + 1

3 x2 + 1
4 x3 + 1

5 x4 = 5
6

1
3 x1 + 1

4 x2 + 1
5 x3 + 1

6 x4 = 19
30

1
4 x1 + 1

5 x2 + 1
6 x3 + 1

7 x4 = 31
60

(The matrix here is an example of the so-called Hilbert Matrix, and is classic in numerical
analysis.)

(a.) Simulate the solution of this system using Gaussian elimination on a three-digit,
decimal based computer which rounds all calculations, including intermediate ones. (Note
the true solution here is x = [1 − 2 4 0]T .

solution:

The augmented matrix is, in three-digit arithmetic:
1.00 0.500 0.333 0.250 1.33
0.500 0.333 0.250 0.200 0.833
0.333 0.250 0.200 0.167 0.633
0.250 0.200 0.167 0.143 0.517


Eliminate the first column:

R2 − (0.500)R1
R3 − (0.333)R1
R4 − (0.250)R1


1.00 0.500 0.333 0.250 1.33
0 0.0830 0.0830 0.0750 0.168
0 0.0830 0.0890 0.0837 0.190
0 0.0750 0.0837 0.0805 0.184


Continue to eliminate the second column:

R3 −R2
R4 − (0.904)R2


1.00 0.500 0.333 0.250 1.33
0 0.0830 0.0830 0.0750 0.168
0 0 0.00600 0.00870 0.0220
0 0 0.00870 0.0127 0.0320


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MA 3046 - Matrix Analysis Problem Set 5

solution:

and then the third column:

R4 − (1.45)R3


1.00 0.500 0.333 0.250 1.33
0 0.0830 0.0830 0.0750 0.168
0 0 0.00600 0.00870 0.0220
0 0 0 0.000100 0.000100


Note the appearance of an inescapable and extremely small pivot on the diag-
onal in the echelon form.

Back substitute:

x4 =
.0001

.0001
= 1.00

x3 =
.0220− .0087x4

.006
=
.0220−

0.0087z }| {
(.0087)(1.00)

.006

=
.0220− 0.0087

.006
=
0.0133

.006
= 2.22

x2 =
.168− .0830x3 − .0750x4

.0830
=
.168−

0.18426z }| {
(.0830)(2.22)−

0.0750z }| {
(.0750)(1.00)

.0830

=
.168− .184− .075

.0830
=
−.091
.0830

= −1.10

x1 =
1.33− .500x2 − .333x3 − .250x4

1.00

= 1.33−
−.550z }| {

(.500)(−1.10)−
.73926z }| {

(.333)(2.22)−
.250z }| {

(.250)(1.00)

= 1.33 + .550− .739− .250 = .891

5 - 6 - 2
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(b.) For your computed solution to part a. above, determine the error (e), the
residual (r).

solution:

The true solution to this problem is [ 1 − 2 4 0 ]T , and therefore the error
is

x− x̃ =


1
−2
4
0

−


0.891
−1.10
2.22
1.00

 =


0.109
−0.900
1.78
1.00


Note the solution is awful!

Using the three-digit version of the matrix and right-hand side, the residual
corresponding to this solution is, using MATLAB to ensure an accurate result:

r =


1.33
0.833
0.633
0.517

−

1.00 0.500 0.333 0.250
0.500 0.333 0.250 0.200
0.333 0.250 0.200 0.167
0.250 0.200 0.167 0.143




0.891
−1.10
2.22
1.00

 =

−0.000260
−0.001200
0.000297
0.000510


Note the residual appear acceptably small relative to the original right-hand
side. Yet the solution is awful! Small residuals may mean nothing!

(c.) Using MATLAB to invert this matrix, determine its condition number in the
infinity norm.

solution:

For the original matrix

A =


1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7

 =⇒ kA k∞ = 2
1

6
.
= 2.083

(sum the first row).
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solution:

However, using MATLAB, we find (to three digits):

A−1 =


16.0 −120. 240. −140.

−120. 1200. −2700. 1680.
240. −2700. 6480. −4200.
−140. 1680. −4200. 2800.

 =⇒ kA−1 k∞ = 13620

and therefore the condition number of this matrix, in the infinity norm, is
approximately 28, 400.

(d.) Do your answers to part (b.) seem consistent with the condition number you
found in part (c.)?

solution:

The condition number found above is very large, i.e. this is a very ill-conditioned
matrix. So we should expect both poor numerical solutions, and small residuals
to necessarily signify anything.

5 - 6 - 4
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7. a. Show that for any matrices A and B in C
um×m, and any scalar α,

κ (αA) = κ (A) , κ
¡
A−1

¢
= κ (A) and κ (AB) ≤ κ (A)κ (B)

solution:

By definition, in any given norm,

κ (A) = kA k · kA−1 k

But, we know that norms are linear. Therefore, for any scalar α,

kαA k = |α|kA k

But also, by the properties of inverses

(αA)−1 = A−1α−1 =
1

α
A−1 =⇒ k (αA)−1 k = 1

|α| kA
−1 k

Therefore, by definition

κ (αA) = kαA k · k (αA)−1 k = (|α|kA k)
µ
1

|α| kA
−1 k

¶
= kA kkA−1 k = κ(A)

and so this proves the first part.

We also know that, for any norm, and any A and B,

kAB k ≤ kA k · kB k

and also, since (AB)
−1
= B−1A−1, then

k (AB)−1 k = kB−1A−1 k ≤ kB−1 k · kA−1 k

Putting these together with the definition of condition number yields

κ (AB) = kAB k · k (AB)−1 k
≤ (kA k · kB k) ¡kB−1 k · kA−1 k¢

= kA kkA−1 k| {z }
κ(A)

· kB kkB−1 k| {z }
κ(B)

5 - 7 - 1
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solution:

This last inequality proves the second result. (We would add that, in practice,
the condition number of the product is generally at least one order of magnitude
smaller than the product of the individual condition numbers, however.)

Finally, by definition

κ
¡
A−1

¢
= kA−1 k · k ¡A−1¢−1 k = kA−1 k · kA k

= kA k · kA−1 k = κ(A)

which proves the final part.

b. Using the singular value decomposition, show that, for any A ∈ Cum×n,

κ(QA) = κ(A)

whenever the columns of Q are orthonormal, i.e. whenever QH Q = I, and the condition
number is computed in the Euclidean norm.

solution:

For this, we simply need to show that A and QA have the same singular
values. But, the full SVD of A is

A = UΣVH

where U and V are unitary. But then

QA = Q
¡
UΣVH

¢
= (QU) ΣVH

However, it is easily seen that (QU)
H
(QU) =

¡
UHQH

¢
(QU) = I

Therefore the equation immediately above this last line must represent a (re-
duced) SVD of QA. But since the reduced SVD is unique except for unit
scalar multiples of the singular vectors, then the singular values of QA must
be precisely the diagonal elements of Σ , i.e. the singular values of A.
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c. Why does the first of the results in part a. imply that detA “close to” zero is a
very poor test for nearly singular.

solution:

A fundamental property of determinants is that

det (αA) = αm det (A)

But this implies that I can make det(αA) arbitrary large or small, simply
by chosing an appropriate value of α, without changing the condition number
of A. Since we have chosen to use the terms nearly singular matrix and ill-
conditioned as synonyms, then the value of the determinant bears no relation
to the condition number, and hence is useless for determining whether or not a
matrix is close to singular.

d. Why do the second and third of these results imply that, in the Euclidean norm,
the condition of the normal equations formulation for solving the least squares problem,
i.e.:

x =
¡
AH A

¢−1
AH b

may be as large as κ(A)3, while the condition of solving the same problem by QR fac-
torization, i.e.:

x = R−1
¡
QH b

¢
has condition exactly equal to κ(A).

solution:

We already know that, in the Euclidean norm, κ
¡
AH A

¢
= κ(A)2. But

then, by the third result above, in any norm,

κ
³¡
AH A

¢−1´
= κ

¡
AH A

¢
= κ(A)2

But we also know κ
¡
AH

¢
= κ(A), and therefore, by the second result in

part a., and the result immediately above

κ
³¡
AH A

¢−1
AH

´
≤ κ

³¡
AH A

¢−1´
κ
¡
AH

¢
= κ (A)

2 · κ (A) = κ(A)3
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solution:

Finally, again by the second and third results in part a., plus the result of
part b.,

κ
¡
R−1QH

¢
= κ

³¡
R−1QH

¢H´
= κ

³
Q
¡
R−1

¢H´
= κ

³¡
R−1

¢H´
= κ

¡¡
R−1

¢¢
= κ (R) = κ (A)
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8. Consider the following “problem” from IR3 to IR1:

f(x) = f(x, y, z) = (x+ y)− z

together with the associated “algorithm”

f̃(x) = f̃(x, y, z) = [fl(x) °+ fl(y)] °− fl(z)

a. Simulate the results of this algorithm,for x = 1, y = 0.005444 . . . , and z = 1 in
rounding, floating point machines using two through six decimal digits, and having
an accumulator (ALU) of only the same length.

solution:

For a two-digit machine,

fl(x) °+ fl(y) = 1.0× 101 °+.54× 10−2 =⇒
.10 × 101

+ .00054× 101
= .10 × 101

Therefore:

f̃(x) = [fl(x) °+ fl(y)] °− fl(z) = [.10× 101] °− .10× 101 = .00× 101

A similar result holds for a three-digit machine. However, for a four-digit ma-
chine:

fl(x) °+ fl(y) = 1.0× 101 °+.5444× 10−2 =⇒
.1000 × 101

+ .0005444× 101
= .1005 × 101

Therefore:

[fl(x) °+ fl(y)] °− fl(z) = [.1005×101]°− .1000×101 =⇒
.1005× 101

− .1000× 101
= .0005× 101

or, after normalizing

f̃(x) = [fl(x) °+ fl(y)] °− fl(z) = .5000× 10−2

Of course, in all cases, the exact result is: f(x) = .54444 . . .× 10−2
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b. For each calclulation, determine

f(x) , f̃(x) , and
k f̃(x)− f(x) k

k f(x) k

Discuss whether these results support or fail to support the statements:
(i.) f̃ is forward stable.
(ii.) f̃ is backward stable.

solution:

Based on the results in part a., we can develop the following table:

Digits f(x) f̃(x) k f̃(x)−f(x) k
k f(x) k ²machine

2 .54444 . . .× 10−2 .00× 10−2 1.00 .5× 10−1
3 .54444 . . .× 10−2 .000× 10−2 1.00 .5× 10−2
4 .54444 . . .× 10−2 .5000× 10−2 .816× 10−1 .5× 10−3
5 .54444 . . .× 10−2 .54000× 10−2 .816× 10−2 .5× 10−4
6 .54444 . . .× 10−2 .544000× 10−2 .816× 10−3 .5× 10−5
7 .54444 . . .× 10−2 .5444000× 10−2 .816× 10−4 .5× 10−6

For this algorithm to be forward stable (accurate), we must have

k f̃(x)− f(x) k
k f(x) k = O(²machine)

i.e. there must be a constant C, independent of x, such that

k f̃(x)− f(x) k
k f(x) k ≤ C ²machine

Note, in this instance, we could use C = 200 and satisfy the above inequal-
ity, however, you should convince yourself that if we changed the value of y
to .00054444 . . ., that value would no longer work. In fact we would have to
then use a C closer to 2000. Therefore, it does not appear that C can be se-
lected independent of x, and so this algorithm is not forward stable. (That, of
course, should have been intuitive, since this is clearly a potential catastrophic
cancellation calculation whenever x = z.
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solution:

Backward stability requires that, for all x, we can find an x̃ such that

f(x̃) = f̃(x) where
kx− x̃ k
kx k = O(²machine)

But
f̃(x) = [fl(x) °+ fl(y)] °− fl(z)

and we know that

fl(x) = x(1 + ²1) , f l(y) = y(1 + ²2) , and fl(z) = z(1 + ²3) ,

where |²i| ≤ emachine. Therefore, because of the properties of floating point
operations (13.7, p. 99), we also know

fl(x) °+ fl(y) = x(1 + ²1) °+ y(1 + ²2) = [x(1 + ²1) + y(1 + ²2)] (1 + ²4)

Hence,

f̃(x) = [fl(x) °+ fl(y)] °− fl(z)
= [x(1 + ²1) + y(1 + ²2)] (1 + ²4) °− z(1 + ²3)

=
h
[x(1 + ²1) + y(1 + ²2)] (1 + ²4) − z(1 + ²3)

i
(1 + ²5)

= x(1 + ²1)(1 + ²4)(1 + ²5) + y(1 + ²2)(1 + ²4)(1 + ²5)

− z(1 + ²3)(1 + ²5)

Multiplying out the various ²i terms and linearizing yields:

f̃(x) = x(1 + 3²1
0) + y(1 + 3²2

0) − z(1 + 2²3
0)

where, again |²i0| ≤ ²machine. But, by definition

x(1 + 3²1
0) + y(1 + 3²2

0) − z(1 + 2²3
0) = f(x̃)

for x̃ = ( x(1 + 3²1
0), y(1 + 3²20), z(1 + 2²30) ).
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solution:

But then, by direct computation:

x̃− x = ( 3²10x, 3²20y, 2²30z ) ≡
 3²10 0 0

0 3²2
0 0

0 0 2²3
0


| {z }

A

 xy
z



But then, by the properties of norms and because A is diagonal:

k x̃− x k = kAx k ≤ kA kkx k
= max {3|²10|, 3|²10|, 3|²10|} kx k ≤ 3²machinekx k

or, equivalently

f̃(x) = f(x̃) where
k x̃− x k
kx k ≤ 3²machine = O(²machine)

Therefore, by definition, the algorithm is backward stable.

5 - 8 - 4



MA 3046 - Matrix Analysis Problem Set 5

9. Consider the vectors

x = [ −1.19 − 2.20 0.986 ]T and y = [ −0.519 0.327 0.234 ]T

a. Compute xyT as an exact (infinite precision) result.

solution:

Since the original data is only given to three digits, the exact answer can be
computed in any six (or more) digit machine (e.g. MATLAB with the format
long turned on). This yields:

xyT =

 0.617610 −0.389130 −0.278460
1.14180 −0.719400 −0.514800
−0.511734 0.322422 0.230724



b. Simulate the calculation of xyT on a three-digit, decimal based computer which
rounds all calculations, including intermediate ones.

solution:

Since this is an outer product, there are no additions or subtractions, and
the only intermediate results are the products shown in part a. So all we need
to do is round that to three significant digits. This produces:

fl
¡
xyT

¢
=

 0.618 −0.389 −0.278
1.14 −0.719 −0.515
−0.512 0.322 0.231



c. Simulate the result of applying Gaussian elimination to this system in part b., on
the same notional computer you used in part b. Based on your calculations, what would
the theoretical rank be of the matrix?

solution:

From part b. we have that, in a three-digit machine,

A = fl
¡
xyT

¢
=

 0.618 −0.389 −0.278
1.14 −0.719 −0.515
−0.512 0.322 0.231


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solution:

Proceeding then with Gaussian elimination we have as the respective multipliers
(in a three digit machine)

fl (l21) = fl

µ
1.14

0.618

¶
= fl(1.84466...) = 1.84

and

fl (l31) = fl

µ−0.512
0.618

¶
= fl(−0.828478964...) = −.828

Thus, for example, we will, using three-digit rounding arithmetic, replace the
element in the second row and column with

a22 − (1.84)a12 = (−0.719)−
=−0.71576z }| {

(1.84)(−0.389)
= (−0.719)− (−0.716) = −.00300

Proceeding with the rest of the elimination yields:

R2 − (1.84)R1
R3 − (−.828)R1

 0.618 −0.389 −0.278
0 −0.00300 −0.00300
0 0 0.00100


(Note the trailing zeros are significant, but the leading ones are not! Also
note that no further elimination is required, since we are already in echelon
form!) Theoretically, A was a rank three matrix, since it has three non-zero
pivots, and therefore three pivot (linearly independent) columns. (Although,
obviously, two of the pivots are small, i.e. on the order of (three-digit) machine
precision, and therefore, at least in some sense, we expect this will be “close to”
a rank one matrix. Alternatively, A will likely be nearly-singular, or extremely
ill-conditioned, at least in a three-digit machine.)
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d. What do your results in parts b. and c. say about whether this calculation is

(1.) Accurate (Forward Stable)

(2.) Backward Stable

solution:

Direct computation will show that

xyT − fl ¡xyT ¢ =
−0.000390 −0.000130 −0.000460

0.001800 −0.000400 0.000200
0.000266 0.000422 −0.000276


Therefore, using the infinity norm, we have

kxyT − fl ¡xyT ¢ k∞ = 0.00240 and kxyT k∞ = 2.3740

where, in this instance, both results come from the sum of the magnitudes of
the elements in the second row. Therefore,

kxyT − fl ¡xyT ¢ k∞
kxyT k∞

=
0.00240

2.3740
= 0.001010...

an agreement to well within machine precision on a three digit machine. There-
fore the result appears to be accurate, i.e. the computation (algorithm) appears
forward stable.

However, as we have already observed, fl
¡
xyT

¢
is a rank three matrix.

Since, for any x̃ and ỹ, the product xyT is, in exact arithmetic, of rank one,
then there can be no x̃ and ỹ such that

fl
¡
xyT

¢
= x̃ ỹT

Therefore, by definition, the algorithm is not backward stable.
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